Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413.

نویسندگان

  • T Happe
  • K Schütz
  • H Böhme
چکیده

A 10-kb DNA region of the cyanobacterium Anabaena variabilis ATCC 29413 containing the structural genes of the uptake hydrogenase (hupSL) was cloned and sequenced. In contrast to the hupL gene of Anabaena sp. strain PCC 7120, which is interrupted by a 10.5-kb DNA fragment in vegetative cells, there is no programmed rearrangement within the hupL gene during the heterocyst differentiation of A. variabilis. The hupSL genes were transcribed as a 2.7-kb operon and were induced only under nitrogen-fixing conditions, as shown by Northern blot experiments and reverse transcriptase PCR. Primer extension experiments with a fluorescence-labeled oligonucleotide primer confirmed these results and identified the 5' start of the mRNA transcript 103 bp upstream of the ATG initiation codon. A consensus sequence in the promoter that is recognized by the fumarate nitrate reductase regulator (Fnr) could be detected. The hupSL operon in A. variabilis was interrupted by an interposon deletion (mutant strain AVM13). Under N(2)-fixing conditions, the mutant strain exhibited significantly increased rates in H(2) accumulation and produced three times more hydrogen than the wild type. These results indicate that the uptake hydrogenase is catalytically active in the wild type and that the enzyme reoxidizes the H(2) developed by the nitrogenase. The Nif phenotype of the mutant strain showed a slight decrease of acetylene reduction compared to that of the wild type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Analysis of the psaC Gene Encoding the F(A)/F(B) Apoprotein of Photosystem I in the Filamentous Cyanobacterium Anabaena variabilis ATCC 29413.

In cyanobacteria, green algae, and higher plants, the psaC gene encodes PsaC, the apoprotein for two iron-sulfur clusters, FA and FB, located in the PSI complex in the thylakoid membrane. FA and FB act as the terminal electron acceptors in the PSI complex (reviewed in ref. 2). Our research objective is to develop a genetic system in which various hypotheses concerning the structural and functio...

متن کامل

The coxBAC operon encodes a cytochrome c oxidase required for heterotrophic growth in the cyanobacterium Anabaena variabilis strain ATCC 29413.

Three genes, coxB, coxA, and coxC, found in a clone from a gene library of the cyanobacterium Anabaena variabilis strain ATCC 29413, were identified by hybridization with an oligonucleotide specific for aa(3)-type cytochrome c oxidases. Deletion of these genes from the genome of A. variabilis strain ATCC 29413 FD yielded strain CSW1, which displayed no chemoheterotrophic growth and an impaired ...

متن کامل

Transcription of hupSL in Anabaena variabilis ATCC 29413 is regulated by NtcA and not by hydrogen.

Nitrogen-fixing cyanobacteria such as Anabaena variabilis ATCC 29413 use an uptake hydrogenase, encoded by hupSL, to recycle hydrogen gas that is produced as an obligate by-product of nitrogen fixation. The regulation of hupSL in A. variabilis is likely to differ from that of the closely related Anabaena sp. strain PCC 7120 because A. variabilis lacks the excision element-mediated regulation th...

متن کامل

Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413

The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprise...

متن کامل

Changes in gene expression during nitrogen starvation in Anabaena variabilis ATCC 29413.

When the filamentous, nitrogen-fixing cyanobacterium Anabaena variabilis ATCC 29413 was subjected to nitrogen starvation under aerobic conditions, a complex series of events was initiated which resulted in heterocyst formation and derepression of the ability to fix dinitrogen. Using DNA-RNA hybridization techniques, we monitored the expression of several genes during nitrogen starvation and cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 182 6  شماره 

صفحات  -

تاریخ انتشار 2000